Yes! You can study Physics after Engineering!

Yes, you read the title right. It is indeed possible to become a physicist after you have completed your undergraduate degree in engineering (BE, B.Tech or BS). In fact it is a good way of switching fields if you feel that engineering is not your cup of tea and pure and applied sciences would have been a better option. Sadly, it is often frowned upon by people when someone wants to switch from engineering to physics. The good news however is that there are many institutes and universities both in India and abroad that allow engineers to pursue a masters degree and doctorate in physics if they so choose.

Before I get to the crux of the matter, I need to issue a warning. It is not an easy task to switch from engineering to physics. Most institutes require the candidate to have an understanding of basic physics so as to crack the entrance examinations and/or the interview thereafter. However, we have plenty of coaching institutes in our country that train anyone interested in physics with the required materials. I am not going to endorse any particular coaching center but if you are interested and your pocket allows you, then it would be great if you can join one of those centers. If instead you wish to do self study for the entrance examinations, there is an abundance of materials available for you online and otherwise.

So, why switch from engineering to physics? Frankly speaking, physics offers less money compared to engineering. If you are a computer science graduate, you can literally mint money while working in the corporate sector. But there are certain types of people (including me) who are much more passionate about the universe and its workings and putting such people in engineering is simply going to make them miserable. They might become good engineers but at the back of their head there will always be a feeling that they could have done better in pure science. If you are one of those, then read on as this can be an eye opener.

Few years ago when I expressed my interest in switching fields from engineering to physics, I had to go through the same “Indian mentality” comments from everywhere. People simply cannot get their head around the fact that one’s passion is just as important as career prospects. I can give you a couple of scenarios. If you want to do an MBA after your B.Tech, nobody bats eyelid. If you want to do Civil Service after your B.Tech, nobody says anything either. If you want to write bank exams after your B.Tech, even then nobody will say anything. But the moment you tell people that you want to pursue physics, astronomy, oceanography or some other field related to pure and applied science, suddenly people react to it asking “Why do you want to do physics?

Anyway, the following are the institutes in India and abroad that allow engineers to pursue an advanced degree in physics or related subjects:

Programme Institute City Country
Postgraduate Programme in Astrophysics Instituto de Astrofísica de Canarias Canary Islands Spain
MSc. In Physics and Astronomy Ruhr-Universität Bochum Bochum Germany
Master in Space Sciences and Technology Julius-Maximilians-Universität Würzburg Würzburg Germany
Astronomy and Astrophysics MSc by Research The University of Manchester Manchester England
Masters Degree in Physics University of Basel Basel Switzerland
MSc/Diploma in Astrophysics Queen Mary University of London London England
MSc in Astronomy Western University London Canada
MSc in Physics and Astronomy Chalmers University of Technology Göteborg Sweden
MS in Astrophysical Sciences and Technology Rochester Institute of Technology New York United States
MSc in Astronomy Swinburne University of Technology Melbourne Australia
MSc in Physics & Astronomy York University Toronto Canada
MS in Space Studies University of North Dakota Grand Forks United States
MSc in Space Studies International Space University Strausbourg France
Master Programme in Space Science and Technology Lulea University of Technology Lulea Sweden
MS in Space Sciences Florida Institute of Technology Melbourne United States
Master degree “Astronomical and Space-based Systems Engineering” Observatoire de Paris-Meudon Paris France
Physics (M.Sc.) University of Duisburg-Essen Essen Germany
M.Sc in Physics Central University of Haryana Mahendragarh India
MSc Physics (EuroMasters) University of Surrey Surrey England
MS in Astronomy and Astrophysics Indian Institute of Space Science and Technology Thiruvananthapuram India
MSc in Physics University of Pune Pune India
MSc. Physics Lovely Professional Univesity Phagwara India
M.Sc Course in Physics University of Delhi New Delhi India
M.Sc in Physics Jawaharlal Nehru University New Delhi India
PhD in Physics Tata Institute of Fundamental ResearchMBA Mumbai India
PhD in Astronomy and Astrophysics Inter-University Center for Astronomy and Astrophysics Pune India
PhD in Physics Indian Institute of Science Education and Research Various India

 

A caveat I take here is that I compiled the list of foreign institutes almost 5 years ago. I am not sure of the accuracy of these today. However, at the time of compilation of this list, all these institutes had written in their respective websites that they take engineering graduates for a masters degree in physics, astronomy or related subjects. I suggest you contact these institutes individually and find out.

In addition to these institutes, there are institutes that fall under the “may be” category. That is those institutes that may take an engineer for a masters or doctorate programme in physics. It will depend on their requirements and your eligibility. But I will provide a list of such institutes as well just in case:

  • University of Groningen – Groningen, The Netherlands
  • Katholieke Universiteit Leuven – Leuven, Belgium
  • University of Amsterdam – Amsterdam, Netherlands
  • International University in Bremen – Bremen, Germany
  • University of Southern Queensland – Toowoomba, Australia
  • University of Oulu – Oulu, Finland
  • University of Hertfordshire – Hertfordshire, England
  • University of Glasgow – Glasgow, Scotland
  • Heidelberg University – Heidelberg, Germany
  • University of Bonn – Bonn, Germany
  • Aarhus University – Aarhus, Denmark
  • Copenhagen University – Copenhagen,    Denmark
  • University of British Columbia – Vancouver, Canada
  • University of Calgary – Calgary, Canada
  • University of Manitoba – Winnipeg, Canada
  • Queen’s University – Kingston, Canada
  • Universite Paris Diderot – Paris, France
  • University of Sussex – Sussex, England
  • Curtin University – Bentley, Australia
  • University of Adelaide – Adelaide, Australia
  • University of Oslo – Oslo, Norway
  • University of Tromso – Tromso, Norway
  • University of Silesia – Katowice, Poland
  • Rheinische Friedrich – Whilhelms Univeritat Bonn – Bonn, Germany
  • Jacobs University Bremen – Bremen, Germany
  • University of Helsinki – Helsinki, Finland
  • University of Amsterdam – Amsterdam, Netherlands
  • University of Ferrara – Ferrara, Italy
  • People’s Friendship University – Moscow, Russia
  • Friedrich-Alexander-Universität Erlangen-Nürnberg – Nuremberg, Germany
  • University of Rostock – Rostock, Germany
  • Technische Universität München – Munich, Germany
  • Ludwig-Maximilians-Universität München – Munich, Germany
  • Friedrich-Schiller-Universität Jena – Jena, Germany
  • Technical University of Vienna – Vienna, Austria
  • Bonn-Cologne Graduate School of Physics and Astronomy – Cologne, Germany
  • University of Trieste – Trieste, Italy
  • University of Trento – Trento, Italy
  • University of Bologna – Bologna, Italy
  • University of Cergy-Pontoise – Cergy-Pontoise, France
  • Ecole normale supérieure    Paris    France
  • Stockholm University    Stockholm    Sweden
  • Monash University    Melbourne    Australia
  • University of Tokyo    Tokyo    Japan
  • University of Nagoya – Nagoya, Japan
  • University of Osaka – Osaka, Japan
  • University of Keio – Tokyo, Japan
  • ETH Zurich – Zurich, Switzerland
  • University of Jyvaskyla – Jyvaskyla, Finland
  • University of Milan – Milan, Italy
  • University of Pisa – Pisa, Italy
  • University of Turin – Turin, Italy
  • Kings College – London, England
  • University of Toronto – Toronto, Canada
  • University of Alberta – Alberta, Canada
  • University of Ottawa – Ottawa, Canada
  • Tokyo Institute of Technology – Tokyo, Japan
  • University Observatory Munich – Munich, Germany
  • University of Marburg – Marburg, Germany
  • National University of Singapore – Singapore

Mind you, this list is in the “may be” category. Unlike the previous lists, these universities may or may not admit engineers for a science programme. So don’t come and complain here if your application gets rejected by any of these universities. In fact I don’t take guarantee for the previous lists either. Your admission to any institute in the world is a sum total of a variety of parameters and your ability in qualifying each one of them. No university is obliged to take you just because you applied. However, switching fields to physics after engineering is a long sought after information among many aspirants especially in India and I thought that I should write this article.

If you have noticed, the lists here do not follow any particular order. They are not arranged according to country or rankings of universities. The reason is that the list wasn’t compiled in a day. It was the culmination of many years of searching. Thus this list was made as and when I found relevant information. I am sure you have experienced posting on some physics forums about your interest in switching fields to physics and the backlash that comes from the “intellectuals” of those forums. All you get is some mockery and misinformation. For sometime, I had to face that until I decided to figure this out myself. It was not easy but it was fun finding information. I started putting whatever information I could find in an excel sheet. I think it is time to give out this information so that any engineer out there who wants to switch fields to pure science can do so with as little hassle as possible.

If you have any doubts regarding what I mentioned here, feel free to comment. I believe that I have done my part in telling you where to get what you want. The rest is up to you. Prepare well for the entrance examinations of these institutes and apply on time. The time has finally arrived for you to pursue your dreams. All the best!

Update:

I have written a sequel to this article describing my experience doing MSc Physics. You can read it here – https://www.iampleasant.com/2018/09/msc-physics-after-b-tech-in-information-technology/

Why Study Astrophysics?

The study of our universe

Cosmology – The study of our universe

I am often asked why I am so obsessed with studying astronomy, astrophysics, cosmology etc. which serves no practical purpose to anyone. The people who ask such questions entertain the notion that anything that does not give immediate monetary benefit is not worth pursuing. In this article I will try as much as possible to highlight the benefits of pursuing pure science such as astrophysics. I will be using the words astronomy and astrophysics interchangeably as differentiating the two is not the main aim here.

Astrophysics to me is an eternal subject. The study of our universe will continue as long as the universe exists and therefore the subject of astronomy will stay on for trillions of years into the future (or at least till any intelligent species can make the study.)  We exist because the universe exists and that makes the study of our universe the most important of all subjects in my opinion.

A person who does not have any training in astrophysics or for someone who thinks he or she is too “practical” may not be convinced with this answer. For such people, any subject should have the potential of generating immediate revenue. In their point of view, the trendiest subjects that have a career potential in the market are the ones people should be pursuing. That point of view is not essentially wrong. However, these so called trendy subjects are like soap bubbles. They form and then get destroyed after a period of time. People pursuing them always run a risk because if the subject of their choice goes down in popularity, they are forced to learn the next trending subject in the job market.

Space science as a subject does not suffer from this problem. It has lived on ever since the dawn of human civilization and is bound to continue into the foreseeable future. Besides, making money in my opinion should not be our pursuit as a race of intelligent beings. Our world is slowly moving towards a non-monetary one and thus our real pursuit should be the attainment of knowledge and its applications.

Astrophysics - A pure science

Astrophysics – A pure science

As I said, astrophysics is a pure science. If you ask any astrophysicist as to whether a particular theory found by him or her has an immediate application in daily life, he or she may say that there aren’t any. However, the same thing can be told about many other subjects. I have added some references that will tell you about many subjects that fall into the category of being “useless” to the “practical” folks but are still pursued by thousands. Hence, it is not something that one must criticize astronomy with. No subject is useless. In the hand of the right person, the scope of any subject is limitless.

If you are willing to delve deep enough, you will know that astronomy is actually a field with a lot of practical applications. Of course the applications come indirectly and eventually but the impact is profound. Astronomy is a frontier research field. In order to do any kind of research in it, you need cutting edge technology. The study of astronomy thus pushes the limits of our current technology thereby contributing to the development of new and innovative methods in terms of instruments, processes and software to get things done. Therefore, pushing research in astronomy will push research in other fields when these technologies are used in the broader sense.

The benefits of astronomy comes from technology transfer i.e. by transferring the technology that was originally invented for astronomy into various applications in the industry. Some areas where we can see the fruits of research in astronomy are optics, electronics, advanced computing, communication satellites, solar panels and MRI Scanners.  Even though it takes time before an application of a research in astrophysics finds its way into our daily life, the impact it eventually makes is worth the wait. Astronomy also has revolutionized our way of thinking by constantly giving us new ideas throughout history.

Let’s now look at a few examples where the research in space sciences and technology is helping humans around the world:

Medicine

MRI Scanner

MRI Scanner

Perhaps the most important application of astronomy for us would be its technology transfer to medicine. Both astronomy and medicine requires us to see objects with ever more precision and resolution in order be accurate and detailed in our analysis. The most notable among the applications is the method of aperture synthesis. It was developed by the radio astronomer Martin Ryle of the Royal Swedish Academy of Sciences. His technology is now used in Computerized Tomography which is commonly called CT scan. It is also used in Magnetic Resonance Imaging or MRI and Positron Emission Tomography or PET in addition to other imaging methods.

The Cambridge Automatic Plate Measuring Facility has collaborated with a drug company whereby blood samples from leukemia patients can be analyzed much faster. This helps in better accuracy in medication.  The method that is now used for non-invasive way to detect tumors was originally developed by radio astronomers. It helped increase the true-positive detection rate of breast cancer to 96%.

The heating control systems of neonatology units, i.e. units for newborn babies were initially developed as small thermal sensors to control telescope instrument. The low energy X-ray scanner used for outpatient surgery, sports injuries etc. was developed by NASA. It is also used by the Food and Drug Administration of USA to study the contamination in pills. The software that is used for processing satellite pictures is also helping medical researches to do wide scale screening of Alzheimer’s disease.

The Earth System

Asteroid 2011 MD

Asteroid 2011 MD

Our planet is under the constant influence of the Sun and our climate depends on it greatly. Studying the dynamics of the sun and other stars thus help us have a better understanding of Earth’s climate and its effects. Studying the solar system, especially asteroids tell us about the potential threats that they pose to the Earth. We do not want to be wiped out like the dinosaurs and studying potentially hazardous objects give us insights into how we can protect ourselves in time of a catastrophe. Even the recent passage of the asteroid 2011 MD dangerously close to Earth is a reminder that we should accelerate development of technologies to prevent an impact. Missions to asteroids also give us opportunities to test our technologies in future space exploration and also give insights into subjects such as geology.  It is also important to do space exploration as part of our long term exploitation of space based resources.

Industry

Charge Coupled Device

Charge Coupled Device

In industry, there are many technology transfers that can be cited. For instance, the Kodak Technical Pan was a film originally developed to use in solar astronomy to record the changes on the surface structure of the Sun. It is now used by industrial photographers, medical and industrial spectroscopy specialists and industrial artists. Until recently, the Technical Pan was also used to detect diseased crops and forests, in dentistry and medical diagnosis. It was also used for probing layers of paintings to check for forgery.

The Charge Coupled Devices or CCDs were first used in astronomy in 1976 as sensors for astronomical image capture. This Nobel Prize winning discovery not only replaced film in telescopes but also in personal cameras and mobile phones.

IDL or Interactive Data Language is used for data analysis in astronomy. It is now also used by companies such as General Motors to analyze data from car crashes. This means that astronomy is contributing to research in vehicle safety.

IRAF or Image Reduction and Analysis Facility is a collection of software written by the National Optical Astronomy Observatory. It is used by AT&T to analyze computer systems and to do graphics in solid-state physics.

Communication

GPS - Global Positioning System

GPS – Global Positioning System

Radio astronomy has given birth to excellent communication tools, devices and data processing methods. For example, the computer language FORTH was first developed in order to be used at the Kitt Peak Telescope. The founders of the language also created the company named Forth Inc. and the language is now being used widely by FedEx for their tracking services.

The satellites of Global Positioning System rely on distant astronomical objects such as quasars and other distant galaxies to determine accurate positions. So, next time you use GPS, remember the stars.

The most common everyday communication application of astronomy would be Wireless Local Area Network or WLAN. Astronomer John O’Sullivan in 1977 came up with a method to sharpen images from a radio telescope. It was later found to be useful in strengthening radio signals in computer networks thereby giving birth to WLAN.

Aerospace and Defense

Aerospace and Defense

Aerospace and Defense

Astronomy and the aerospace industry share many technologies that include telescope instrumentation, imaging and processing techniques for images. A defense satellite is basically a telescope that is pointed towards earth and thus use very identical technology and hardware to that of astronomy. The methods used to differentiate between rocket plumes and cosmic objects in stellar atmosphere models are similar as well. They are studied for use in early warning systems.

A device called solar-blind photon counter was once invented by astronomers to measure particles of light from a source without being overwhelmed by the particles from the Sun during the day. It is now used to detect the ultraviolet photons coming from the exhaust of a missile thereby aiding in UV missile warning system. It can also be used to detect toxic gases.

Energy Sector

Solar Panels - A source of clean energy

Solar Panels – A source of clean energy

The techniques developed to detect gravitational radiation produced by massive bodies in acceleration is used to determine the gravitational stability of underground oil reserves. That is a fantastic application in the energy industry.

The methods in astronomy can also be used for finding new fossil fuels in addition to evaluating the possibility of new renewable sources. Companies such as Texco and BP use IDL to do analysis of core samples around the oil fields. The graphic composite material that was initially developed for an orbiting telescope array is now being used by Ingenero in their solar radiation collectors.

The technology used in X-Ray telescopes to image X-Rays is now being researched for plasma fusion. If successful, it would lead to a boom in clean energy in future.

Education and International Collaboration

Astronomy in Schools

Astronomy in Schools

Astronomy is a great tool to stimulate young minds. If you want children to pursue careers in science and technology, astronomy can help a lot. It engages the minds of kids and helps them keep up to date with the happenings in the scientific world. This therefore affects not just astronomy but other subjects as well. Modern science is a more collaborative effort. And astronomy has been instrumental in bringing together many countries to collaborate on projects that require telescopes and other instruments located at multiple points in the world. Researchers travel around the world to work on these facilities. This brings in many other advantages such as cultural transfer as well.

From the examples I mentioned and countless other examples that you can find online, it is pretty clear that the study of the universe is very beneficial to humanity. There are many people around the world who are interested in the study of the universe but are thwarted by the pseudo-pragmatic folks who think the subject is useless. My suggestion to anyone who wishes to study the subject would be to not let others tell you how practical or impractical that subject is. If they do not like what you are doing, it is their problem, not yours. Half the people who advice you against the subject do not really know anything about its breadth and depth.

The Sextant - An ancient celestial navigation tool

The Sextant – An ancient celestial navigation tool

As mentioned before, astronomy changes the way we think and look at this world. Even before writing was invented, humans have looked up at the sky to make decisions regarding when to plan the crops, how to keep track of the days and months or how to navigate the seas. Some of the greatest quests of human kind would not have been possible if methods to study the skies weren’t invented. Where we came from and where we are going are deep philosophical questions that are yet to be answered. In my opinion, studying the cosmos using rigorous science is the only way to finally know the answer.

Before I end, I must thank astronomers Marissa Rosenberg and Pedro Russo and all the other eminent people whose insightful articles I have referred to create this write-up. I have added them as reference for anyone who wishes to read more about the advantages of investing their time and effort in studying astronomy, astrophysics, cosmology and related areas, which are considered pure science without any immediate practical value by many.

My father often quotes the old saying, “People will come and go, but the institution remains.” I would like to rephrase that and say, “People who oppose the study of our universe will come and go. But the universe will remain.

Bibliography

  • Aperture synthesis. (2014, Apr 22). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Aperture_synthesis
  • Astronomy and the Modern World. (2011, Feb 17). Retrieved from Canadian Astronomy: http://www.castor2.ca/07_News/headline_110310.htmlz
  • Astrophysics. (2014, Apr 22). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Astrophysics
  • CASU Astronomical Data Centre. (2001, Feb 1). Retrieved from Cambridge Astronomy Survey Unit: http://casu.ast.cam.ac.uk/surveys-projects/adc
  • Gallagher, B. (2013, Apr 11). The 10 Most Worthless College Majors. Retrieved from Complex City Guide: http://www.complex.com/city-guide/2013/04/10-most-worthless-college-majors/
  • Hall, S. (2013, Nov 11). How Astronomy Benefits Society and Humankind. Retrieved from Universe Today: http://www.universetoday.com/106302/how-astronomy-benefits-society-and-humankind/
  • Loose, T. (2012, Jan 12). College Majors That Are Useless. Retrieved from Yahoo Education: http://education.yahoo.net/articles/most_useless_degrees.htm
  • Odenwald, S. (2001, Feb 1). Why is astronomy important in our lives? Retrieved from Astronomy Cafe: http://www.astronomycafe.net/qadir/q1138.html
  • Rosenberg, M., Russo, P., Bladen, G., & Christensen, L. L. (2013). Astronomy in Everyday Life. Retrieved from International Astronomical Union: https://www.iau.org/public/themes/why_is_astronomy_important/
  • Rosenberg, M., Russo, P., Bladen, G., & Christensen, L. L. (2013, Nov 3). Why is Astronomy Important? Retrieved from Cornell University Library: http://arxiv.org/abs/1311.0508
  • Why is astronomy important? (2004, Aug 3). Retrieved from Clearly Explained: http://clearlyexplained.com/technology/science/astronomy/why-is-astronomy-important.html

UND Space Studies Distance Learning Part – I

The University of North Dakota has an excellent masters degree program in space called Space Studies, which was started in 1987. What makes the program so special is its interdisciplinary nature and the willingness to admit students from practically any undergraduate background. The program encompasses engineering, physical sciences, biological sciences, policy and business related aspects of space. As a student of the Department of Space Studies at UND, I feel that this fantastic program must get people’s attention.

To quote my professor, for most people, space means just rockets, astronauts, and pretty Hubble pictures. No one sees the broad view where there are multiple subjects involved making the field very intricate and fascinating. Right from equipment manufacture to complicated life support systems to space policy making, space is a field where all the cutting edge technology, science and politics comes into picture.

UND graduate, Brian White has written an excellent blog regarding the Space Studies masters at UND as well as ISU. Hence, I am not going to cover that part. You can also get more information about the program from the official department website. What I plan to do in Part – I of this series is to discuss one of the three required courses in Space Studies masters called SpSt 501 – Survey of Space Studies – 1 and my experience so far as a distance student studying it. This is an introductory course that lets students know what space studies is all about and what they can expect from the remaining semesters. It is co-taught by all the faculty members of the program and hence gives the students an introduction to the subjects taught by each faculty and their individual research areas.

As any person fascinated by space like me, there will be lot of questions in mind such as to which branch of space studies one needs to specialize and so on. For instance, some students like astrophysics while some others like commercial space and yet there are some who like spacecraft design and space biology. After 501, students start to rethink their interesting areas. I have heard students talk about specializing in fields that they never thought they would specialize when they started the program.

What appears to be very fascinating might not be the field where our original talent lies. SpSt 501 gives us the opportunity and wide perspective to think and choose our area of specialization as we advance in the program. I am a distance student of this program living in India and it has given me an amazing experience studying online. UND Team has invested sufficient amount of time and money in order to give the distance students as close to a campus experience as possible with high quality videos and power point presentations.

Prerequisites

There are no specific prerequisites for this course since students from practically any background with descent GRE and TOEFL scores can join the program. I think this is the most exciting aspect of this program. It doesn’t matter whether we have a physics degree or aerospace engineering degree in our undergraduate study. What matters is having an intense desire to make contributions to the field of space. And that I think is the prerequisite for this course. But from experience of this course, I have a few suggestions. It is good to revise your basic economics, biology and mathematics that you learned in school and college. Keep an overall outlook about the various aspects of space in the current space age and past. You should know the basics like what a light year or an astronomical unit means among other things. You should be familiar with the concepts of biological, geological and cosmological evolution. As far as mathematics is concerned, if you are familiar with trigonometry, logarithms and exponential series, you should do just fine. Knowledge of calculus is appreciated but not applied too much in this particular course.

Enrollment

Every student will be given access to the Campus Connection portal. This is where he/she can register for the course. Once registered, the student can request permission to access the course in the Learning Management System of the department. This is the one stop location where most of the activities take place. The lectures, power points, course syllabus, grade book and assignments are managed here. You can either download the lecture or the presentation or watch it online. Interested people can also buy some of the lectures from Amazon before enrolling to get a better understanding of the course.

Progress

Lectures are uploaded every week within two days after the class takes place. Since distance students cannot attend the classes, their attendance is counted by the chat sessions they attend with the concerned faculty and other distance students. The chat session for the distance students happen a week after the original classes were conducted. So, technically, distance students finish the course a week after the campus students do it. For 501, there are 3 chat sessions per week and we can choose any one of them depending on our convenience. The exams are also called assignments. So do not confuse. They are conducted online and you can see your grades almost immediately unless there are subjective questions.

Description

As mentioned, 501 is a broad based introductory course. It is not an elective but a required course and carries 3 graduate credits. It is advised that you take this course at the first opportunity you get. The following will give you a brief idea about what this course actually comprises of. Please note that this might change depending on several factors associated with the university. There are 7 modules that we need to study in order to complete 501 as shown below:

1. Introductions

This module introduces you to all the remaining modules and each faculty associated with those modules. A brief overview of the course syllabus takes place. In addition, a separate class on writing methods is also conducted since all students have to write and submit papers to journals for the rest of their academic and research career. It is a very important module and I learned a lot from it.

2. Space History & Policy

Space Studies is just as policy oriented as its technical areas. This is important since we need to understand the real politics that goes behind the scenes of every space mission or research conducted. We should know from where the money comes and how it is regulated. For those of us who wish to try our hands in space entrepreneurship, policy is a must. This module introduces us to the general space arena and space history. Further, it teaches us space policy and law along with military space. So, by the end of this module, our perspective starts to change and that is a good thing.

3. Orbital Mechanics and Space Mission Design

This is really an interesting module and I must say my favorite. This is where I am focusing my current research and is a very smooth and straightforward module. It teaches introductory orbital mechanics and trajectory related calculations. The fundamental equations in rocket science and their applications are taught. Rockets, launch vehicles, payload and spacecraft design are the other subjects dealt in this module. The module ends with the analysis and design of space missions, which reminded me of my software engineering classes. It is basically a space replica of the same. Overall, this is where the technology part of space studies begins. My personal advice is to get this module engraved in your mind since you are going to use the concepts you learn here for the rest of your life if you work in this field.

4. Planetary and Space Science

This is yet another interesting module. Those who want to move onto astronomy and astrophysics, astrobiology or earth science should know all the concepts taught in this module. It covers lunar and solar system science, the planet mars, asteroids, meteorites and comets, extraterrestrial life, observational astronomy and earth science and global change. I think these topics are self explanatory.

5. Space Life Sciences

I just loved this module. It opened up yet another door in my mind through which ideas can pass. In this module, space suits, psychological aspects of adaptation to space and the history and policy of human spaceflight are taught. I never thought I would become interested in space life support systems before I studied this module. As I mentioned before, our interests will eventually change as we move through the program until we find what exactly is it that we want to do in space.

6. Satellite Applications

For information technology graduates like me, this module is very closely related to the things we learned during our undergraduate program. Hence, it is relatively easy to grasp the details. The topics covered are communication satellites and remote sensing.

7. Space Economics, Business, and Management

It is again policy related. It speaks about international space where all other countries that have space programs other than US and Russia are introduced. More topics on NASA and its current position in US space arena is also taught in addition to going to deep into the government and industry aspects of space economics and management.

By now, you might have got an idea about what SpSt 501 is all about and how it can benefit you during your entire Space Studies program and beyond. The semester has ended and I can say for sure that I am fully satisfied with the course curriculum. A few final words before I close this topic:

  1. If you are a distance student, make sure that you have plenty of time to invest. If you are working and studying, you are going to be on a rough ride especially if you have joined a research team of some sort.
  2. Being a distance student, you are advised to take only one course per semester. This means that you will take about 3-4 years to complete the required 33 credits of graduate work. My personal advice is – DO NOT take more than one course per semester since 1 itself is too much work. If you are very clever, you can manage 2 but NEVER 3!
  3. Do not think that just because the exams are open book type, you don’t need to study. You have to work really hard since the exams are timed and the more time you spend referring materials, the lesser you will get to answer the questions. So, study really well before attempting the exams.
  4. If you are an overseas distance student, you won’t be funded. Hence, please make sure that you have sufficient sources of funding if you plan to take the courses overseas.

You don’t have to rush yourself to complete the 33 credits within 2 years like the regular students. Remember, in academics, it is not always the first person to finish first who wins. It is the person who finishes well. With this maxim, I am concluding this post.  I wish you all the best in your Space Studies program!