Mars One – Aren’t We Going Too Fast?

Mars One is perhaps the hottest news in the aerospace and astrophysics fields. It gives hope to our species as a next step in becoming in a multi-planet civilization. This highly ambitious project of landing groups of brave men and women on the red planet does however have its fair share of critics some of whom include researchers at MIT and astrophysicist Neil deGrasse Tyson. So I am curious to ask. Aren’t we going too fast with this project? Is 2024 the right time for human settlement in Mars?

Lessons from the Past

Every space mission prior to this have had several trial runs. For example the lunar missions involved first sending an orbiter around the moon followed by impactors/landers. While America went onto send humans to the moon the Soviet Union did unmanned sample returns. So it is clear that space missions to any celestial body should be done in stages.

NASA and other space agencies including India and Japan have achieved orbiting and landing capabilities on other celestial bodies. Therefore unmanned missions to Mars with the capability of returning samples from Mars in my opinion should be the next stage. Russia in 2011 attempted the Fobos-Grunt which was a sample return mission to the satellite of Mars called Phobos. The failure of the mission to even leave the Earth orbit proves how difficult it would be to pull off ambitious space programs.

When we talk about Mars missions, most of us only look at the success stories. We must all take a look at the number of Mars missions by both America and the Soviet Union which failed.

The Challenges

The challenges involved in long term spaceflight are quite different compared to missions to Earth orbit or even to the Moon. The biggest challenge is communication. Calculations show that the time delay for radio signals between Earth and Mars can vary from 3 minutes to up to 22 minutes depending on the position of the two planets at any given time. This makes all sorts of “real time” communication known to us useless. It is possible to have a web server orbiting around Mars that periodically synchronizes with servers on Earth. That way a copy of the world wide web can be provided for the astronauts in Mars. Emails can also be taken care with this solution.

However, the early astronauts going to Mars are not going there to use YouTube and Facebook. Their mission can go critical anytime and the time delay between the two planets will make a distress call an impossibility. Further, even if distress call does reach Earth, there is no way a rescue team can be sent and by the time a communication is sent back, the mishap could have already occurred.

This brings us to the second challenge – training. What type of training can equip a person to handle critical situations in an alien environment with no hope of getting help? Can the team be divided in qualifications or should every team member have all the qualifications. I remember one of my previous professors who said that a degree in medical sciences is important for every astronauts going to Mars despite their work. So dual degree specializations like engineering + medicine or physics + medicine should in his opinion become part of learning curriculum for astronauts to Mars. The justification he gave was that no crew would want to be in a situation where their only doctor is dead.

But is medicine the only compulsory specialization? How about instrumentation? Shouldn’t the astronauts who wishes to colonize Mars be masters in instrumentation? Teaching every crew member in everything will increase the cost and not teaching would be risky. So there is a tradeoff between cost and risk. According to Mars One website, the crew will undergo training starting this year until 2024. That is a total of 9 years training. It would be amazing if the crew does survive that training.

The Return

Some candidates selected for Mars One have told that many English people migrated to Australia and never returned. That may be true, but if they really want to return to England they can do that tomorrow. Christopher Columbus did return to Spain after his voyage to the West Indies. Vasco da Gama did return to Portugal after his voyage to India.

I am not being paranoid but let me give a scenario. Like in many science fiction movies, what if there is a life form on Mars that we haven’t yet found? What if this life form infects humans in negative ways? In such scenarios, the uninfected/unaffected crew members must have an option to escape the planet.

There is a difference between being brave and being foolhardy. A mission to Mars is amazing. But it shouldn’t be a suicide mission and definitely not a one-way trip. Even if the intention is to colonize the planet the crew members should have a chance to return home if the mission fails. And when it comes to Mars missions, the past teaches us that failure is part and parcel of it.

The Right Method

With all the problems described above, going to Mars is certainly the most risky and the most costly exploration program ever conceived. As Dr. Tyson already pointed out, private companies aren’t interested in investing in an endeavor with so many unknown parameters and huge risk. According to him this can cause Mars One to fail to get funding.

Should we then abandon the mission? Of course not! We are explorers by nature. Mars One or any other similar missions should never be abandoned. However, there must be some tweaks done to the existing methodology. As I said before, it should be done in stages. The following is a rough sketch of what can be done.

  • Sample Return – All space agencies in the world including the private ones should at least try one unmanned mission that involves going to Mars, taking samples and returning them to Earth. The more such missions we try, the better equipped we will become in preparing for a human spaceflight. This will also teach us about landing and take off with heavy payload on Mars.
  • Manned Orbiter Missions – It is a good idea to send a manned orbiter mission around Mars. Astronauts can spend a few orbits around the planet and return. This will simulate all the necessary physiological and psychological aspects in deep space missions. simulate long term manned spaceflight by send humans in an orbit around the Sun.
  • Space Stations – Orbiting space stations around Mars is a solution to the safety and return problem. The backup crew can live in the space station while the landing party conducts their business. Further, the landing party can come aboard the space station for the backup crew to go down. This will ensure better efficiency. In addition, during distress, the entire mission is not at risk. Perhaps a secondary landing party can be deployed to investigate problems. At least there will be one person to come back and tell the story.
  • Data Banks – Huge data banks with information crafted by specialists from around the world should form the primary reference of the astronauts in addition to the internet facility that I mentioned before. Every possible scenario involving medicine, engineering, planetary geology, biotechnology etc. that the astronauts might find themselves in should be thought out and the solutions must be given. It may take months, years or even decades to develop. But it needs to be done nevertheless.

Conclusion

Though a huge fan of Mars missions, I think we as a species are still not equipped with the technological prowess to pull off a manned trip like Mars One. I certainly believe that we are going too fast with the Mars One mission. 2024 is only 9 years away and we still haven’t fully understood the effects of long term manned space missions in deep space. The only data we have are from long term space station missions and the psychological impacts on the astronauts and cosmonauts who spend a long time in space are not that good. A well planned and well coordinated effort is the way to go. There is no need to rush. There is no space race between any superpowers these days.

References

Elenin and Levy – More Warnings from Nature?

Recent activities in the sky have sparked interests in the NEA Research world as news on three potentially hazardous objects viz asteroid 2005 YU55 and the comets ElEnin and Levy hit the headlines in the past few months. Discoveries like these usually cause panic and often incredible and funny speculations and assumptions. Many are already raising questions as to whether we should be concerned or not. The following video shows some of the potentially hazardous asteroids on close encounter with Earth.

As mentioned in my previous article, 2005 YU55 will pass as close as 0.85 lunar distances or roughly 200,000 miles from earth between November 3 and 13 this year. The closest approach will be on November 8 at 07:13 UT. Though close, there is nothing to be concerned as per the latest reports.

Image of Elenin as seen by STEREO Spacecraft on August
Elenin as seen by STEREO Spacecraft on August – Courtesy NASA

Named after its discoverer, as is tradition, comet Elenin also known as C/2010 X1 to the International Astronomical Union was discovered by Russian astronomer Leonid Elenin on December 10, 2010 using the International Scientific Optical Network’s robotic observatory near Mayhill, New Mexico. It is as a small, icy Solar System body. It should not confused with rogue planets or brown dwarfs or the alleged Tyche or Nibiru. During the time of its discovery, it was roughly 647 million km from the Sun between Jupiter and Saturn’s orbits. Classed as a long period comet, it takes more than 11,600 years to make a single orbit of the Sun and was discovered during one of its rare solar visits.

In its closest approach to the Sun, Elenin will pass at 0.48 AU on September 10 2011. The chances of collision with the Sun is just speculation as is the passage between Earth and Moon. On October 16 2011, it will pass closest to Earth at 34.9 million km or 0.233 AU from us which is approximately 90 times further than one lunar distance. Except for experiencing some possible tail debris on November 1 as Earth enters the tail of ElEnin, there won’t be any major effects on Earth unlike false claims like earthquakes caused by its gravitational effect since the mass of its nucleus which is about 20 billion tonnes is too small to cause major changes on the Earth or the Moon. Thus, there is not much to be expected of Elenin though some astronomers are concerned since it is speeding up as it closes in on the Sun.

Comet Levy P/2006 T1 was discovered by David Levy visually using a 0.41-m reflecting telescope, as it passed about 40′ to the north of Saturn just before dawn at around 12h UT on Oct 2, 2006 from his Jarnac Observatory near Tucson, AZ. It was added to the NEO Confirmation page, roughly 8 hours later marking David’s 22nd discovery. His last discovery was the comet Takamizawa-Levy, 12 years ago in April 1994. Its astrometry revealed that it is a short period comet approaching the Sun a little over once every 5 years (5.24 years) with perihelion distance placing it close to the position the Earth occupies in late December. On 2006 Oct 27 at about 03:30 UT, Levy only about 1′ north of the nucleus of the bright galaxy NGC 3521 in Leo.

Image of Comet Levy P2006T1 and NGC 3521 - Coutesy NASA
Comet Levy P2006T1 and NGC 3521 – Coutesy NASA

During its 2006 passage, it achieved an apparent magnitude of ~9.5. Though believed to have been recovered on 03 June 2011 at magnitude 19.8, the recovery was never confirmed by other observatories and the comet was never observed since 01 December 2006 since it only has a confirmed observation arc of 60 days. The next perihelion is calculated to be on 11 January 2012 at 1.007 AU from the Sun. The predicted perigee on 2012-Jan-20 is between 0.15 to 0.20 AU with nominal at 0.18 AU. The predicted apparent magnitude in 2012 might be 7 with elongation of 90°. It is said that Levy will go past above us at a rate faster than our own planet’s orbital velocity on January 29.

Recently a warning was issued by former NASA consultant and US space expert Richard C. Hoagland that Elenin, is under “intelligent control” and heralds a warning to all humanity of a greater global catastrophe. NASA space scientist David Morrison has reported pretty much the same though he has added that these asteroids and comets will pass at safe distances from Earth. Interestingly, some scientists had previously speculated that the two distinct rows of 8 small circular objects trailing Elenin were UFO’s belonging to an as yet unidentified “extraterrestrial civilization.” Though supported by Hoagland, this claim seems to be just fanciful (or wishful) thinking. In any case, these three objects are not going to hit us or cause any significant global catastrophe as feared by many.

I wanted to include more spectacular pictures, but strangely WordPress is not agreeing with me today. I will try to add them at a later time.

Sources:
http://en.wikipedia.org/wiki/P/2006_T1_(Levy)
http://www.armaghplanet.com/blog/10-facts-you-need-to-know-about-comet-elenin.html
https://theboldcorsicanflame.wordpress.com/2011/07/page/8/
http://innidra.wordpress.com/2011/08/27/asteroids-comets-earth%E2%80%99s-close-encounters/
http://www.birtwhistle.org/GalleryC2006T1.htm