Mars One – Aren’t We Going Too Fast?

Mars One is perhaps the hottest news in the aerospace and astrophysics fields. It gives hope to our species as a next step in becoming in a multi-planet civilization. This highly ambitious project of landing groups of brave men and women on the red planet does however have its fair share of critics some of whom include researchers at MIT and astrophysicist Neil deGrasse Tyson. So I am curious to ask. Aren’t we going too fast with this project? Is 2024 the right time for human settlement in Mars?

Lessons from the Past

Every space mission prior to this have had several trial runs. For example the lunar missions involved first sending an orbiter around the moon followed by impactors/landers. While America went onto send humans to the moon the Soviet Union did unmanned sample returns. So it is clear that space missions to any celestial body should be done in stages.

NASA and other space agencies including India and Japan have achieved orbiting and landing capabilities on other celestial bodies. Therefore unmanned missions to Mars with the capability of returning samples from Mars in my opinion should be the next stage. Russia in 2011 attempted the Fobos-Grunt which was a sample return mission to the satellite of Mars called Phobos. The failure of the mission to even leave the Earth orbit proves how difficult it would be to pull off ambitious space programs.

When we talk about Mars missions, most of us only look at the success stories. We must all take a look at the number of Mars missions by both America and the Soviet Union which failed.

The Challenges

The challenges involved in long term spaceflight are quite different compared to missions to Earth orbit or even to the Moon. The biggest challenge is communication. Calculations show that the time delay for radio signals between Earth and Mars can vary from 3 minutes to up to 22 minutes depending on the position of the two planets at any given time. This makes all sorts of “real time” communication known to us useless. It is possible to have a web server orbiting around Mars that periodically synchronizes with servers on Earth. That way a copy of the world wide web can be provided for the astronauts in Mars. Emails can also be taken care with this solution.

However, the early astronauts going to Mars are not going there to use YouTube and Facebook. Their mission can go critical anytime and the time delay between the two planets will make a distress call an impossibility. Further, even if distress call does reach Earth, there is no way a rescue team can be sent and by the time a communication is sent back, the mishap could have already occurred.

This brings us to the second challenge – training. What type of training can equip a person to handle critical situations in an alien environment with no hope of getting help? Can the team be divided in qualifications or should every team member have all the qualifications. I remember one of my previous professors who said that a degree in medical sciences is important for every astronauts going to Mars despite their work. So dual degree specializations like engineering + medicine or physics + medicine should in his opinion become part of learning curriculum for astronauts to Mars. The justification he gave was that no crew would want to be in a situation where their only doctor is dead.

But is medicine the only compulsory specialization? How about instrumentation? Shouldn’t the astronauts who wishes to colonize Mars be masters in instrumentation? Teaching every crew member in everything will increase the cost and not teaching would be risky. So there is a tradeoff between cost and risk. According to Mars One website, the crew will undergo training starting this year until 2024. That is a total of 9 years training. It would be amazing if the crew does survive that training.

The Return

Some candidates selected for Mars One have told that many English people migrated to Australia and never returned. That may be true, but if they really want to return to England they can do that tomorrow. Christopher Columbus did return to Spain after his voyage to the West Indies. Vasco da Gama did return to Portugal after his voyage to India.

I am not being paranoid but let me give a scenario. Like in many science fiction movies, what if there is a life form on Mars that we haven’t yet found? What if this life form infects humans in negative ways? In such scenarios, the uninfected/unaffected crew members must have an option to escape the planet.

There is a difference between being brave and being foolhardy. A mission to Mars is amazing. But it shouldn’t be a suicide mission and definitely not a one-way trip. Even if the intention is to colonize the planet the crew members should have a chance to return home if the mission fails. And when it comes to Mars missions, the past teaches us that failure is part and parcel of it.

The Right Method

With all the problems described above, going to Mars is certainly the most risky and the most costly exploration program ever conceived. As Dr. Tyson already pointed out, private companies aren’t interested in investing in an endeavor with so many unknown parameters and huge risk. According to him this can cause Mars One to fail to get funding.

Should we then abandon the mission? Of course not! We are explorers by nature. Mars One or any other similar missions should never be abandoned. However, there must be some tweaks done to the existing methodology. As I said before, it should be done in stages. The following is a rough sketch of what can be done.

  • Sample Return – All space agencies in the world including the private ones should at least try one unmanned mission that involves going to Mars, taking samples and returning them to Earth. The more such missions we try, the better equipped we will become in preparing for a human spaceflight. This will also teach us about landing and take off with heavy payload on Mars.
  • Manned Orbiter Missions – It is a good idea to send a manned orbiter mission around Mars. Astronauts can spend a few orbits around the planet and return. This will simulate all the necessary physiological and psychological aspects in deep space missions. simulate long term manned spaceflight by send humans in an orbit around the Sun.
  • Space Stations – Orbiting space stations around Mars is a solution to the safety and return problem. The backup crew can live in the space station while the landing party conducts their business. Further, the landing party can come aboard the space station for the backup crew to go down. This will ensure better efficiency. In addition, during distress, the entire mission is not at risk. Perhaps a secondary landing party can be deployed to investigate problems. At least there will be one person to come back and tell the story.
  • Data Banks – Huge data banks with information crafted by specialists from around the world should form the primary reference of the astronauts in addition to the internet facility that I mentioned before. Every possible scenario involving medicine, engineering, planetary geology, biotechnology etc. that the astronauts might find themselves in should be thought out and the solutions must be given. It may take months, years or even decades to develop. But it needs to be done nevertheless.

Conclusion

Though a huge fan of Mars missions, I think we as a species are still not equipped with the technological prowess to pull off a manned trip like Mars One. I certainly believe that we are going too fast with the Mars One mission. 2024 is only 9 years away and we still haven’t fully understood the effects of long term manned space missions in deep space. The only data we have are from long term space station missions and the psychological impacts on the astronauts and cosmonauts who spend a long time in space are not that good. A well planned and well coordinated effort is the way to go. There is no need to rush. There is no space race between any superpowers these days.

References

Mars Orbiter Mission – The Journey Ahead

Mars Orbiter Mission - "Mangalyaan"

Mars Orbiter Mission – “Mangalyaan” (Artist’s Impression)

It makes me proud to write the sequel to the article I had written on 5th November 2013, the day India launched her first mission to Mars. The remarkable level of precision achieved by ISRO scientists while inserting the Mars Orbiter spacecraft also known as Mangalyaan into orbit this morning shows the technological prowess that the country has achieved ever since it started its space programme.

Today as ISRO is celebrating its most critical success, I can’t help but remember the scene from the film Contact where Eleanor Arroway played by Jodie Foster talks about what it means to be a visionary. Seeing far into the future is the mark of all visionaries especially those working on space programmes. It takes a lot of thinking to stop oneself from asking the question, “Will this help common people?” I was asked the same question back on 2008 when the Large Hadron Collider was started. Whether scientific endeavors help people immediately is not the right question to ask in my opinion.

As I have mentioned in one of my previous writings, it is hard to predict what would come out of a new scientific project. For example, nobody knew that nonstick frying pans, PET Scans, WiFi and other things that make our lives more meaningful would come out of research in space sciences and technology. These are things that came as spinoffs while scientists worked on various space related projects. Thus there is no way we can disregard endeavors into space just because they are too expensive.

MOM Mission Summary (Image by ISRO)

MOM Mission Summary (Image by ISRO)

Since I mentioned expense, the MOM is actually less expensive compared to the Mars missions of other countries such as the USA and the former Soviet Union. Even our neighbor who recently had the audacity to declare hostility to us after a bilateral meeting failed to achieve what we have. Even though the mission is less expensive with a small payload, I think we should look at it as a stepping stone to greater missions.

MOM has made India the only country that succeeded in a Mars mission in the first attempt. It won’t be enough to just admire our scientists on a blog post like this but I have to do it nevertheless. Now that we know how to put a satellite around Mars, the next logical step obviously would be to make a landing. But before going that far we must launch more satellite-like missions. Also I think we should try missions that are similar to the Phobos-Grunt of Russia. The ability to bring back samples from such a far away place should be the next stage in our space programme. Returning to Earth is also important for human missions to Mars. Settlement is one thing but the ability to return to Earth equally important

Since we are developing our indigenous lunar rover, we will also be able to develop a Mars rover like the ones used by NASA. So, looking into the future, I can say that we will soon be able to achieve whatever USA and USSR did during the Cold War era. It wouldn’t be an exaggeration to say that the level of success of future missions by ISRO would be even greater than what was achieved by the cold warring nations considering the advancements in technology.

PSLV - The workhorse of Indian Space Programme

PSLV – The workhorse of Indian Space Programme

What more can we think about? Will there be a human spaceflight to Mars by ISRO? Will we overtake NASA before 2030? A quick look at the ISRO website and Wikipedia will reveal that India is indeed taking deep space missions seriously. Next year the solar mission called Aditya – 1 and a mission to Venus is planned by ISRO. And there are preparations already underway for a human spaceflight of a crew of two. And of course there is the Chandrayaan – 2, which as I mentioned before will use a rover.

Thus the time is not far before Indian astronauts walk the surface of Moon and Mars and also venture into the far reaches of deep space. To quote Star Trek, “To boldly go where no one has gone before” will be and should be the motto of our future endeavors into space. As we advance into a high-tech future social issues such as poverty and war would cease to exist as we become a technologically advanced super civilization!

Mars Orbiter Mission – A step in the right direction for India

mangalyaan

Mangalyaan in orbit (Artist’s Impression)

People often criticize scientific endeavors especially the ones pertaining to space travel as a waste of time and money. The Mars Orbiter Mission of India also known as Mangalyaan had its share of criticism throughout its development. In the midst of all this, the craft lifted off to space today, 5th November 2013 at 2:38 PM IST and was inserted into an orbit around the Earth with remarkable precision a few minutes later. This first step is a remarkable milestone in the history of Indian Space Program. Of course it is only the first of the three stages of the entire mission but it is something worth to be proud.

When the Indian Space Program was started in 1969, little did anyone know that India would become part of an emerging Asian Space Race. Our technologically superior neighbor has made excellent strides in the field of space travel. They had their first man and first woman in space using indigenous technology and now they are building their first space station. However, India’s achievements should not be seen in a lesser light because the focus of ISRO is more on unmanned missions. And having been able to start off successfully in a Mars mission is something that should invite our neighbor’s envy.

PSLV-C25 Rocket on the Launchpad

PSLV-C25 Rocket on the Launchpad

Mars has never been an easy target for space faring nations. The first ever mission to Mars was by the erstwhile Soviet Union as early as 10 October 1960. The heat of Cold War would have been probably the driving force to attempt a Mars mission just 3 years after Sputnik. The high failure rate see throughout the historic timeline of Mars exploration had made many a person including me quite apprehensive of the Mangalyaan mission. Even the recent failure of Phobos-Grunt and Yinghuo-1 mission of Russia and China in 2011 made people raise their eyebrows when it was announced that India is eyeing the red planet. It is exhilarating to finally see the probe lift off the ground in the PSLV-C25 rocket. ISRO’s faith in PSLV has paid off once again and we are on our way to become the fourth nation to reach Mars if everything goes according to plan.

India is a country with great economic and cultural divide. It may be justified to ask whether the mission was worth the 4.5 billion rupees spent on it when other national priorities such as women’s education and healthcare in rural India could be easily met with the amount. After all it is just a satellite that will orbit around Mars and send back signals of what it studies. People can ask what difference is this mission going to make. It is a difficult question to answer and would require vast amount of research. However, one thing can be said about it. Comparing India’s Mars mission to that of United States or Russia may be utterly unfair in my opinion. United States and Soviet Union had too much funding during the cold war to perform mission after mission despite the number of failures they encountered. And still they can afford to send rovers and other advanced instruments to deep space and afford to fail in it. This is India’s first interplanetary mission and should be compared to Mariner – 9 of United States which was launched back in 1971. Mariner – 9 was an orbiter mission and that is exactly what Mangalyaan is all about and must be seen as such. It is true that USA and USSR were having landers and rovers back in the ’70s but that fact should not be used to demean India’s mission.

Mars Orbiter Trajectory

Mars Orbiter Trajectory

Mars Orbiter Mission of India is a step in the right direction. We may have poverty and prejudice within Indian society but one must see the bigger picture. As part of the human race, it is our duty to explore and colonize other planets. Saying that it will ensure the continuity of our species might be too much of a cliche but that is most certainly a part of interplanetary mission. Interplanetary missions in its true sense has not yet taken place since that would mean going to a distant planet and coming back. For that reason I am not very fond of the Mars One program that is currently seeking volunteers. A true interplanetary mission must ensure that participants are capable of going back and forth between the planets. Christopher Columbus and Vasco da Gama did not maroon themselves in the places they explored. They did go back to their homes to tell the stories about their journey. It is important thus for any manned or unmanned Mars mission to go there and return in order to be fully interplanetary. Anyway, I feel very proud of my country’s capability to perform a feat that many have failed in. Our two hostile neighbors in my opinion should learn from us instead of taunting us unnecessarily over petty border issues.